Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Braz. j. microbiol ; 47(2): 414-416, Apr.-June 2016. graf
Article in English | LILACS | ID: lil-780834

ABSTRACT

Abstract Escherichia coli is the major causative agent of human cystitis. In this study, a preliminary molecular analysis carried out by PCR (polymerase chain reaction) demonstrated that 100% of 31 E. coli strains isolated from patients with recurrent UTIs (urinary tract infections) showed the presence of the curli fimbria gene (csgA). Curli fimbria is known to be associated with bacterial biofilm formation but not with the adhesion of human cystitis-associated E. coli. Therefore, this work aimed to study how curli fimbria is associated with uropathogenic E. coli (UPEC) as an adhesion factor. For this purpose, the csgA gene was deleted from strain UPEC-4, which carries three adhesion factor genes (csgA, fimH and ompA). The wild-type UPEC-4 strain and its mutant (ΔcsgA) were analyzed for their adhesion ability over HTB-9 (human bladder carcinoma), Vero (kidney cells of African green monkey) and HUVEC (human umbilical vein) cells in the presence of α-D-mannose. All the wild-type UPEC strains tested (100%) were able to adhere to all three cell types, while the UPEC-4 ΔcsgA mutant lost its adherence to HTB-9 but continued to adhere to the HUVEC and Vero cells. The results suggest that curli fimbria has an important role in the adhesion processes associated with human UPEC-induced cystitis.


Subject(s)
Humans , Adhesins, Escherichia coli/metabolism , Cystitis/microbiology , Escherichia coli Proteins/metabolism , Escherichia coli Infections/microbiology , Uropathogenic Escherichia coli/metabolism , Bacterial Adhesion , Gene Expression Regulation, Bacterial , Sequence Deletion , Adhesins, Escherichia coli/genetics , Escherichia coli Proteins/genetics , Uropathogenic Escherichia coli/genetics
2.
Journal of Veterinary Science ; : 315-319, 2010.
Article in English | WPRIM | ID: wpr-197697

ABSTRACT

The temperature-sensitive hemagglutinin (Tsh) expressed by strains of avian pathogenic Escherichia (E.) coli (APEC) has both agglutinin and protease activities. Tsh is synthesized as a 140 kDa precursor protein, whose processing results in a 106 kDa passenger domain (Tsh(s)) and a 33 kDa beta-domain (Tsh(beta)). In this study, both recombinant Tsh (rTsh) and supernatants from APEC, which contain Tsh(s) (106 kDa), caused proteolysis of chicken tracheal mucin. Both rTsh (140 kDa) and pellets from wild-type APEC, which contain Tsh(beta) (33 kDa), agglutinated chicken erythrocytes. On Western blots, the anti-rTsh antibody recognized the rTsh and 106 kDa proteins in recombinant E. coli BL21/pET 101-Tsh and in the supernatants from APEC grown at either 37degrees C or 42degrees C. Anti-rTsh also recognized a 33 kDa protein in the pellets from APEC13 cultures grown in either Luria-Bertani agar, colonization factor antigen agar, or mucin agar at either 26degrees C, 37degrees C, or 42degrees C, and in the extracts of outer membrane proteins of APEC. The 106 kDa protein was more evident when the bacteria were grown at 37degrees C in mucin agar, and it was not detected when the bacteria were grown at 26degrees C in any of the culture media used in this study. Chicken anti-Tsh serum inhibited hemagglutinating and mucinolytic activities of strain APEC13 and recombinant E. coli BL21/pET101-Tsh. This work suggests that the mucinolytic activity of Tsh might be important for the colonization of the avian tracheal mucous environment by APEC.


Subject(s)
Adhesins, Escherichia coli/metabolism , Brazil , Escherichia coli/metabolism , Gene Expression Regulation, Bacterial , Hemagglutination , Mucins/metabolism , Protein Transport , Recombinant Proteins/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL